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Abstract. Theab initio calculations of the ground-state properties of cubic C–BN solid solutions
are presented for the first time to our knowledge. The Löwdin perturbation technique has been used
in theab initio LMTO–ASA method to calculate the total energy, the equilibrium lattice constant,
the bulk modulus and its pressure derivative and the formation energy of mixed crystals of cubic
BN and diamond. The calculated results indicate that the solid solution between C (diamond) and
cubic BN is nonideal, with the equilibrium lattice constants larger than the predicted values of
ideal mixing (Vegard’s law) and the positive energies of formation. The bulk moduli of BN-rich
(BN)x(C2)1−x (x > 0.5) are lower than those of diamond, the value of ideal mixing and even cubic
BN. This anomalous behaviour is consistent with the nonideal expansion of the equilibrium lattice
constant. The calculated results are in good agreement with the recent experimental measurements
by Knittle et al1995Phys. Rev.B 5112149.

1. Introduction

There are many applications for hard materials in high-performance engineering applications.
Diamond and cubic boron nitride (c-BN) have recently received considerable attention because
of the extreme values of their properties such as hardness, thermal conductivity, elastic
constants and band gaps [1], and their promising material properties for abrasives, heatsinks,
protective coatings and wide band-gap semiconductor applications. Therefore, the synthesis
of these difficult-to-obtain materials has stimulated great interest and has been increasingly
studied in recent years [2–4]. Several groups have tried to synthesize these and related materials
using different growth techniques such as energetically enhanced (plasma, hot filament,
microwave) chemical vapour deposition (CVD) [2], laser ablation [3], and ion-beam techniques
[4]. Since the physical properties of cubic BN are very similar to those of diamond, cubic BN
films are candidate substitutes for the envisioned applications for diamond films. Moreover,
the small lattice mismatch between cubic BN and diamond suggests that cubic BN may indeed
be an attractive substrate for epitaxial diamond-film growth, and would be the natural candidate
for heterojunctions with diamond [5–7]. For the extreme values of diamond and c-BN, there
are several theoretical studies on relevant heterojunctions or superlattice structures and the
properties of mixed crystals of diamond and c-BN. For example, the electronic structure of
diamond/sphalerite BN interfaces and superlattices were presented by Lambrecht and Segall
[5] and Pickett [7]; the anomalous band-gap behaviour and phase stability of c-BN–diamond
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alloys were studied by Lambrecht and Segall [8]; the valence band offsets of C/BN strained
heterojunctions and C/(BN)x(C2)1−x and BN/(BN)x(C2)1−x were studied by Zhenget al [9].

For the hexagonal phases of carbon and BN, namely, graphite and h-BN, the structures
are more thermodynamically stable than diamond and c-BN at normal pressure. Mixed C–BN
layered hexagonal phases have been synthesized by a number of groups [10–17], and studied
theoretically by Liuet al [18]. Starting from the layered hexagonal mixed crystals, Badzian has
synthesized mixed crystals of diamond and c-BN by a high-pressure high-temperature phase-
transformation technique [10]. Recently, Knittleet al [19] reported the synthesis of several
cubic C–BN solid solutions using the laser-heated diamond cell. They measured the effect of
composition on the lattice parameters and vibrational frequencies of samples across the C–BN
solid solution, and also measured the isothermal bulk modulus of CxBxNx (x ∼ 0.33).

In this paper, we present results of total energy calculations for five ordered structures
of (BN)n(C2)4−n (n = 0, 1, 2, 3, 4) by means of the local-density-functional theory and the
linear-muffin-tin-orbital (LMTO) band-structure method in the atomic-sphere approximation.
We calculate the ground-state properties of(BN)n(C2)4−n. These include the zero-pressure
lattice constant, bulk modulus and cohesive energy. We also determine the statistically averaged
properties of the disordered alloys by a cluster expansion, which is a generalization of the
Connolly–Williams approach [20].

2. Methods of calculation

The total energies of the five ordered structure alloys(BN)n(C2)4−n are calculated by means
of the LMTO–ASA method with the L̈owdin perturbation technique [21]. Among the five
ordered structures (n = 0, 1, 2, 3, 4), then = 0 element (C) andn = 4 compound (BN)
have diamond and zinc-blende (ZB) structures respectively. Then = 2 compound has the
CuAu structure (L10), andn = 1 and 3 compounds have Luzonite (L12) structures. In order
to provide an adequate description of the charge density and potential in interstitial regions,
empty spheres (equal to the number of atoms in a unit cell) are added at suitable sites, while
preserving the crystal symmetry. The ratio of radii for B, N and C atoms and the empty sphere
are 1:1:1:1. The special-k-point method [22] is adopted for the summation over the Brillouin
zone.

3. The ground-state properties of cubic C–BN solid solutions

3.1. The equilibrium lattice constants

The results of total energiesEtot (eV) as a function ofV/V0 are obtained by the above method.
The equilibrium lattice constants obtained from total-energy calculation for C and cubic BN
are listed in table 1. The experimental data and other calculated results are also listed in table 1.
The lattice constants of C and BN presented here are all between those of other calculations
and experiments. The fact that our lattice constants are slightly larger than other calculations
is mainly due to the L̈owdin perturbation scheme used in our calculation. They are also little
underestimated compared to experiment because of the neglect of the so-called combined-
correction term in our total-energy calculations, but the differences between the experimental
data and our results are very small, i.e., only 0.005 Å (0.1%) for C and 0.006–0.007 Å (0.17%)
for cubic BN.

The calculated lattice constants for five ordered structure alloys(BN)n(C2)4−n (n =
0, 1, 2, 3, 4) compared with lattice constants of ideal mixing solid solutions are listed in table 2
and shown in figure 1. From figure 1(a), one can see that the calculated lattice constants are
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Table 1. Calculated lattice constants for C and BN compared with the experiments and other
calculations.

a0 (Å)

C
Present calc. 3.562
Other calc. 3.561 [23], 3.55 [24], 3.53 [5], 3.56 [26, 27]
Expt 3.567 [19, 25, 30]

BN
Present calc. 3.610
Other calc. 3.58 [5], 3.606 [31]
Expt 3.617 [19], 3.616 [30]

Table 2. Calculated lattice constants, lattice constants of ideal mixing solid solutions and the
difference between them for five ordered structure alloy(BN)n(C2)4−n (n = 0, 1, 2, 3, 4). All
units are in angströms.

Lattice constants Fractional
Calculated lattice of ideal mixing Differences differences
constantsa0 solid solutionsai a0 − ai (a0 − ai)/ai (%)

C 3.562 3.562 0 0
(BN)(C2)3 3.588 3.574 0.014 0.4
(BN)(C2) 3.612 3.586 0.026 0.7
(BN)3(C2) 3.613 3.598 0.015 0.4
BN 3.610 3.610 0 0

Figure 1. (a) The calculated lattice constants (solid triangles) and lattice constants of ideal mixing
solid solutions (dashed line) for five ordered structure alloys(BN)n(C2)4−n (n = 0, 1, 2, 3, 4).
(b) The differences between calculated lattice constants and lattice constants of ideal mixing solid
solutions (open circles are calculated points, and solid line is fitting curve). All units are in
angstr̈oms.

larger than those of ideal mixing between diamond and BN. The differences are also listed in
table 2 and shown in figure 1(b). According to Vegard’s law, the lattice constants of the ideal
mixing (BNn)(C2)4−n solid solution can be written asa(n) = (n/4)a(BN) + (1− n/4)a(C2).
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The departure from Vegard’s law is the largest for(BN)(C2) (x = 0.5 for (BN)x(C2)1−x).
The anomalous behaviour of lattice constants indicates that the cubic C–BN compounds are
nonideal solid solutions, such that the incorporation of BN into the cubic diamond lattice results
in expansion of the crystallographic unit cell relative to Vegard’s law. The calculated results
are in good agreement with recent experimental data by Knittleet al [19]. The nonideality
of the molar volumes in the cubic C–BN system can be described with a standard mixing
model where the excess volume term is given by1VKS = x(1− x)(δWG/δP ) [19, 32, 33].
Here,x and (1− x) are the mole fractions of cubic BN and C, andWG is the interaction (or
Margules) parameter. We obtain theδWG/δP for the three ordered structures of(BN)(C2)3,
(BN)(C2)and(BN)3(C2)as 0.22, 0.30, and 0.23 J MPa−1 respectively, which is about twice the
values obtained from experimental measurements [19] (0.13±0.02 J MPa−1). The maximum
deviation from ideality is∼2% in volume, which is also twice that of the experimental values
[19]. The slightly larger values might be due to the fact that our results are obtained from
ordered structures, whereas the experimental data are obtained from disordered solutions. In
disordered alloys, statistical averaging will lead to a decrease of nonideality.

3.2. Isothermal equation of state

From the results of the total energy calculation, the isothermal equation of state for
(BN)n(C2)4−n can be obtained, which is shown in figure 2. The pressure can be expressed as
the function of volume (V/V0). The relationship of the strainV/V0 under the same pressure
among the different compositions of solid solution(BN)n(C2)4−n can be obtained as

(V/V0)diamond < (V/V0)(BN)(C2)3 < (V/V0)(BN)(C2) < (V/V0)(BN) < (V/V0)(BN)3(C2)

whereP > 0

and

(V/V0)diamond > (V/V0)(BN)(C2)3 > (V/V0)(BN)(C2) < (V/V0)(BN) > (V/V0)(BN)3(C2)

whereP < 0.

The above relation shows that(BN)n(C2)4−n (n− 1, 2, 3, 4) can be compressed or expanded
more easily than diamond under the same pressure. Although theP–V curve of(BN)(C2)3,
which contains 75% diamond, is higher than that of BN, that of(BN)(C2), which contains 50%
diamond, is only slightly larger than that of BN, while that of(BN)3(C2), which contains 25%
diamond, is even lower. (See figure 2 and the inset figure.) These calculated results are in good
agreement with experimental work (see figure 3 of [19]). In their work, Knittleet al found that
the equation of state for Cx(BxNx) (x ∼ 0.33) (which is the same as(BN)0.67(C2)0.33 in this
work) was lower than that for BN. The theoretical results and the experimental results show
that C–BN solid solutions are nonideal, and the conclusions are consistent with the nonideal
expansion for the cubic C–BN lattice constants.

3.3. Bulk modulus

Hardness is one of the most important issues in the study of the cubic C–BN solid solution.
The bulk modulus is often regarded as a measure of the hardness of materials. Based on the
total-energy results, we obtain the bulk modulus as follows:

B = V d2Etot

dV 2
(1)

whereB is the bulk modulus,V is the unit cell volume andEtot is the total energy. The
calculated bulk moduliB0 and their pressure derivativesB ′0 for C and BN are compared with
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Figure 2. Calculated pressure–volume data for(BN)n(C2)4−n. The curves from top to bottom are
the isothermal equations of state for diamond,(BN)(C2)3, (BN)(C)2, BN and(BN)3(C2). (Also
shown as the inset figure.)

the experimental and other calculated results in table 3. Equation (1) is a direct calculation from
total energy results. There are several other methods to calculate bulk modulus. One important
method is to calculate the bulk modulus of each structure by fitting the total energy–volume
to the Birch–Murnaghan equation of state [37],

Etot (V ) = B0V

B ′0

[
(V0/V )

B ′0

B ′0 − 1
+ 1

]
+ constant (2)

whereB0 andB ′0 are the bulk modulus and its pressure derivative at the equilibrium volume
V0. Note that equation (1) can be derived from equation (2), and the differences between the
results obtained by equations (1) and (2) are very small, so we have listed the results from
equation (1). Cohen had developed a simple empirical formula [38] for the bulk moduli of
diamond and zinc-blende solids using scaling arguments for the relevant energy and volume.
It can be expressed as [39],

B0 = Nc

4

(1972− 200I )

d3.5
(3)

whereNc is the coordination number. An empirical ionicity parameterI = 0, 1 and 2 for
group IV, III–V and II–VI solids, respectively, accounts for the reduction inB0 arising from
increased charge transfer. For tetrahedral systems,Nc = 4; otherwiseNc is the average
coordination number.
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Table 3. Calculated bulk moduli and their pressure derivatives for C and BN compared with
experiments and other calculations. (The values in brackets are predicted from the empirical
formula.)

B0 (GPa) B0

C
Present calc. 446 (433) 3.45
Other calc. 438 [23, 26, 27], 470 [24], 480 [5] 3.5 [23, 26, 27], 4.2 [24], 3.6 [5]
Expt 443 [25], 442 [28], 545 [29] 4.0 [25]

BN
Present calc. 392 (371) 3.79
Other calc. 412 [5], 367 [31] 3.6 [5]
Expt 290 [5]a, 465 [34]a, 369 [35]

a From estimated elastic constants.

Table 4. Calculated bulk moduli, their pressure derivatives from total energy results (equation (1)),
bulk moduli from empirical formula (equation (3)), and the differences from ideal mixing.

Equation (1) Equation (3)

Differences from Differences from
ideal mixing ideal mixing

B0 B ′0 B0 − Bi (B0 − Bi)/Bi (%) B0 B0 − Bi (B0 − Bi)/Bi (%)

C 446 3.45 0 0 433 0 0
(BN)(C2)3 416 3.84 −16.5 4 411 −6.5 2
(BN)(C2) 391 3.85 −28 8 391 −11 3
(BN)3(C2) 389 3.81 −16.5 4 380 −6.5 2
BN 392 3.79 0 0 371 0 0

To compare the results of bulk moduli by different methods, we also use equation (3) (based
on calculated lattice constant results) to calculateB0 for (BN)n(C2)4−n which are shown in
table 4.

From table 3, it can be seen that our calculated bulk modulus of 446 GPa for diamond
is close to the experimental value of 442 GPa, and lower than a previous LMTO result [5]
but higher than the calculated values of [26] and [27]. But the results from the empirical
formula are smaller than the values from total-energy calculation for diamond and BN. Due
to the high bulk modulus of diamond, the addition of diamond to a BN crystal should increase
the hardness of the alloys. However, our calculated results show that the bulk moduli of the
ordered alloys(BN)n(C2)4−n (n = 1, 2, 3) (which are shown as solid circles in figure 3) are
lower than the interpolated values between diamond (446 GPa) and BN (392 GPa) (shown
as the dashed line in figure 3). The bulk moduli of(BN)3(C2) (containing 25% diamond)
and(BN)(C2) (containing 50% diamond) are even lower than that of BN. Although the bulk
modulus value of(BN)(C2)3 (which contains 75% diamond) is higher than that of BN, the
difference (24 GPa) is only 44% of the difference between diamond and BN (54 GPa). The
bulk moduli from the empirical formula (equation (3)) are found to be lower than those from
total-energy calculation (equation (1)). The results also show that bulk moduli of the ordered
alloys are lower than that of ideal mixing.
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Figure 3. The total-energy calculated bulk moduli and those predicted from the empirical formula
for ordered alloys(BN)n(C2)4−n as well as that of ideal mixing.

4. Properties of disordered alloys

The properties of the disordered alloys, such as the energy of formation, can be expanded in
a cluster expansion (total energy expansion). One can calculate the probability distribution
of the tetrahedral clusters from the minimization of the free energy within Kikuchi’s cluster
variation method (CVM) [8, 40, 41]. By using a random distribution for statistical averaging,
the energy of formation of disordered alloys can be obtained as follows [8]:

Eform(x) =
4∑
n=0

Pn(x)E
n
f orm (4)

whereEform(x) is the energy of formation of disordered alloys, andEnform is the energy of
formation of each of the above five ordered structures,Pn(x) is the statistical weight, which is
the probability that thenth short-range ordered structure occurs in the alloy. It can be expressed
as

Pn(x) =
(

4

n

)
xn(1− x)4−n. (5)

Using this approach, the energy of formation of disordered alloys can be obtained as

Eform(x) = 0.6x4 − 1.28x3− 0.78x3 + 1.4x. (6)

The energies of formation of disordered alloys are lower than those of ordered alloys (as seen
in figure 4). The statistical averaging simply leads to renormalization by a factor of about 3/4.

5. Conclusion

In this paper, the study of ground-state properties of cubic C–BN solid solutions from first-
principles calculations are presented. The total energy, equilibrium lattice constant, bulk
modulus and its pressure derivative and formation energy of mixed crystals of diamond and
cubic BN have been calculated by theab initioLMTO–ASA method with L̈owdin perturbation
technique. The calculated results indicate that the solid solution between C (diamond) and cubic
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Figure 4. The calculated energy of formation for ordered structure (solid circles) and disordered
alloys (solid line).

BN is nonideal, with equilibrium lattice constants larger than predicted values for ideal mixing
(Vegard’s law) and positive energies of formation. The bulk moduli of BN-rich(BN)x(C2)1−x
(x > 0.5) solid solutions are lower than those of diamond, cubic BN and the value of ideal
mixing. This behaviour is consistent with the nonideal expansion of the equilibrium lattice
constant. The calculated results are in good agreement with experimental measurements.
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